April 1, 2010

RE: Great Mall

In connection with the build-out of your premises at Great Mall, enclosed is a copy of the Site Management Plan for your reference. The Site Management Plan is provided to tenants that require any soil excavation upon their premises.

The Site Management Plan provides a summary and an overview of environmental conditions at the mall which have been remediated. If the tenant desires to excavate soil within any portion of its premises, the Site Management Plan requires that a site-specific Safety and Health plan be prepared. Further, any excavated soils should be analyzed for consistency based upon the prior history of the site and otherwise disposed of in a manner consistent with such findings and in compliance with all current laws and regulations.

To maintain historical environmental records of the property, please provide a copy of the results of all laboratory analyses of sampled soil to the attention of:

Joseph C. Stallsmith
Vice President, Civil Engineering
225 West Washington Street
Indianapolis, IN 46204

If you have any questions, please feel free to call The Mills Tenant Coordination Department 301-968-6232.

Very truly yours,

James Gavan
Director Mills Tenant Coordinator
SITE MANAGEMENT PLAN

Former Ford Automobile Assembly Plant
Formerly 1100 South Main Street
Milpitas, California

Prepared for

Ford Motor Land Development Corporation
One Parklane Boulevard
Dearborn, Michigan 48120

March 1997
Project No. 3341.01K

Geomatrix Consultants
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 BACKGROUND</td>
<td>2</td>
</tr>
<tr>
<td>2.1 PROPERTY DESCRIPTION</td>
<td>2</td>
</tr>
<tr>
<td>2.2 SHALLOW SUBSURFACE CONDITIONS</td>
<td>2</td>
</tr>
<tr>
<td>2.3 PROPERTY USE HISTORY</td>
<td>3</td>
</tr>
<tr>
<td>2.4 SUMMARY OF SOIL INVESTIGATION AND REMEDIATION ACTIVITIES</td>
<td>4</td>
</tr>
<tr>
<td>2.4.1 Soil Investigation Activities</td>
<td>4</td>
</tr>
<tr>
<td>2.4.2 Soil Remediation Activities</td>
<td>5</td>
</tr>
<tr>
<td>2.5 SUMMARY OF GROUNDWATER INVESTIGATION AND REMEDIATION ACTIVITIES</td>
<td>5</td>
</tr>
<tr>
<td>2.5.1 Groundwater Investigation</td>
<td>6</td>
</tr>
<tr>
<td>2.5.2 Groundwater Remediation</td>
<td>6</td>
</tr>
<tr>
<td>2.5.2.1 Groundwater Extraction Trench System and Treatment Plant -</td>
<td>7</td>
</tr>
<tr>
<td>1989 to 1994</td>
<td></td>
</tr>
<tr>
<td>2.5.2.2 Enhanced In-Situ Bioremediation System - 1994 to 1996</td>
<td>7</td>
</tr>
<tr>
<td>2.5.2.3 Jones Chemical Company Groundwater Extraction System -</td>
<td>8</td>
</tr>
<tr>
<td>1994 to Present</td>
<td></td>
</tr>
<tr>
<td>2.6 CURRENT ENVIRONMENTAL CONDITIONS</td>
<td>8</td>
</tr>
<tr>
<td>3.0 HUMAN HEALTH AND ECOLOGICAL RISK EVALUATION</td>
<td>8</td>
</tr>
<tr>
<td>3.1 HUMAN HEALTH RISK</td>
<td>9</td>
</tr>
<tr>
<td>3.2 ECOLOGICAL RISK</td>
<td>9</td>
</tr>
<tr>
<td>4.0 CLOSURE OF SITE REMEDIATION SYSTEMS</td>
<td>9</td>
</tr>
<tr>
<td>4.1 EXTRACTION TRENCH SYSTEM</td>
<td>9</td>
</tr>
<tr>
<td>4.2 TREATMENT SYSTEM</td>
<td>10</td>
</tr>
<tr>
<td>4.3 AIR SPARGING SYSTEM</td>
<td>10</td>
</tr>
<tr>
<td>4.4 MONITORING WELLS</td>
<td>11</td>
</tr>
<tr>
<td>5.0 PROPERTY MANAGEMENT MEASURES DURING ONGOING SITE</td>
<td>11</td>
</tr>
<tr>
<td>OPERATIONS, MAINTENANCE, AND REDEVELOPMENT</td>
<td></td>
</tr>
<tr>
<td>5.1 NOTIFICATION AND DISCLOSURE REQUIREMENTS</td>
<td>11</td>
</tr>
<tr>
<td>5.2 CONSTRUCTION SAFETY MEASURES</td>
<td>12</td>
</tr>
<tr>
<td>5.3 SOIL MANAGEMENT</td>
<td>12</td>
</tr>
<tr>
<td>5.4 USE OF SHALLOW SITE GROUNDWATER</td>
<td>12</td>
</tr>
<tr>
<td>6.0 REFERENCES</td>
<td>14</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS
(Continued)

LIST OF FIGURES

Figure 1 Property Location Map
Figure 2 Site Plan
Figure 3 Groundwater Extraction Trench and Treatment System
Figure 4 Enhanced Bioremediation Air Sparging Wells Network
Figure 5 Monitoring Wells
1.0 INTRODUCTION

Geomatrix Consultants, Inc. (Geomatrix) has prepared this Site Management Plan (SMP) on behalf of Ford Motor Land Development Corporation (FMLDC) for the former Ford Assembly Plant located at the former 1100 South Main Street, Milpitas, California1 (the Property; Figure 1), currently the Great Mall of the Bay Area (Great Mall). The objectives of this SMP are to:

1) summarize the remaining decommissioning activities necessary to complete site closure; 2) provide information on the known environmental conditions at the Property which will remain upon completion of the decommissioning activities; and, 3) address the current system for notification or other requirements during ongoing operations, maintenance, or development of the Property following the decommissioning activities.

The SMP is organized as follows:

- Section 2.0 – presents background information on the Property, including descriptions of the Property and its use history, a description of shallow subsurface conditions, and a summary of soil and groundwater investigation and remediation activities performed at the Property.

- Section 3.0 – discusses the human health and ecological risk issues associated with residual chemicals in soil and petroleum hydrocarbons in groundwater at the Property.

- Section 4.0 – describes the remaining decommissioning activities necessary to complete closure of existing remediation systems.

- Section 5.0 – presents Property management measures developed to address notification and other requirements for the Property that should be considered during ongoing operations and maintenance of the Property, the continuing development of the Property, or if Property use changes. Included in this section is

1 The current address of Great Mall Management is 947 Great Mall Drive, Milpitas, California.
a discussion on management of any disturbed or excavated soil and potential use of groundwater on the Property.

2.0 BACKGROUND

This section summarizes pertinent background information regarding the Property, including a description of the Property, shallow subsurface conditions, Property use history, and remedial investigations and activities performed at the Property.

2.1 PROPERTY DESCRIPTION

The Property is located at the former 1100 South Main Street in a predominantly commercial and industrial area of Milpitas, California. According to the City of Milpitas Planning Department, the Property is designated as a central commercial zone (C-2 zone). Land use in the Property vicinity is agricultural (A zone) to the west, heavy industrial (M-2 zone) to the north, east, and south, and central commercial (C-2 zone) to the southwest and northwest of the Property. Interstate 880 is approximately 1.5 miles to the west, and San Francisco Bay is approximately 5 miles to the northwest.

The Property currently is occupied by a large enclosed shopping mall, the Great Mall. The Great Mall has a building footprint area in excess of two million square feet (approximately 46 acres). The current property configuration is the result of a 1996 subdivision of a larger parcel into the “Great Mall parcel” and nine “out-parcels,” as shown on Figure 2. The subsurface impact of chemicals from former site operations is limited to the Great Mall parcel; therefore, the Property refers only to the Great Mall parcel for purposes of this management plan.

2.2 SHALLOW SUBSURFACE CONDITIONS

The Property is located on relatively flat terrain in Santa Clara Valley that gently slopes northwest toward San Francisco Bay. Ground elevations vary from approximately 45 feet above mean sea level (msl) in the southeastern portion of the Property, to approximately 25 feet above msl in the northwestern corner of the Property. The Property is underlain by a complex
sequence of heterogeneous and laterally discontinuous deposits of clay, silt, sand, and gravel to at least 50 feet below ground surface (bgs). The sediments underlying the Property are predominantly fine grained. This fine-grained matrix contains numerous discontinuous layers of coarse-grained sands and gravel. The coarse-grained layers are typically thin (less than 5 feet thick); however, locally, some borings at the Property had up to 15 feet of sand at depths below 25 feet bgs. Shallow groundwater beneath the Property generally has been observed between 5 and 15 feet bgs. Horizontal hydraulic gradients at the Property generally have been towards the north and northwest. A more detailed description of hydrogeologic conditions at the Property is included in the Groundwater Quality Investigation Report (Geomatrix, 1996a).

2.3 PROPERTY USE HISTORY
Ford Motor Company purchased the Property in 1953 from Western Pacific Railroad. A passenger car and commercial vehicle assembly plant was built in 1953 and operated until May 1983. During its operating life, chemical handling at the automobile assembly plant included the storage and use of:

- solvents, thinners, paints, and other chemical formulations for surface preparation and application of vehicle finish coatings;
- lubricating oils and gasoline for motor vehicles; and
- diesel fuel to power pumps in the emergency fire suppression system.

An industrial wastewater treatment system, that included on-site wastewater lagoons, discharged treated wastewater to the City of Milpitas sanitary sewer system.

The Property was sold to Mariani Financial Corporation in December 1984, and portions of the Property were leased to a variety of tenants, primarily for warehouse/storage uses. The Property was subsequently re-acquired by FMLDC in 1988. In 1994, the former automobile assembly plant building was remodeled into the Great Mall. A detailed description of the
historical uses of the Property is presented in the Site Use History, Former Ford Automobile Assembly Plant report (McLaren/Hart Environmental Engineering [McLaren/Hart], 1992).

2.4 SUMMARY OF SOIL INVESTIGATION AND REMEDIATION ACTIVITIES
Soil investigation and remediation activities were performed at the Property from 1982 to 1993 by various consultants and contractors on behalf of FMLDC. Investigative and remedial activities undertaken for soil at the Property are summarized below.

2.4.1 Soil Investigation Activities
McLaren/Hart and others conducted soil investigation activities in localized areas of the property based on the use or storage of chemicals in these areas. In addition, McLaren/Hart conducted two phases of soil investigations, one in October-November 1992 (Phase I), and one in February 1993 (Phase II) (McLaren/Hart, 1996a) to identify remedial actions for soil.
Chemicals detected in soil at the Property primarily consisted of petroleum hydrocarbons, including gasoline, stoddard solvent, hydraulic oil, polynuclear aromatic compounds (PNAs), and benzene, toluene, ethylbenzene and xylenes (BTEX), as well as tetrachloroethylene (PCE), trichloroethylene (TCE), methylene chloride, naphthalene, 1,2-methylnaphthalene, acetone, nickel and zinc. McLaren/Hart established cleanup concentrations for the soil at the Property based on potential exposure to chemicals in soil assuming both residential and commercial industrial scenarios and protection of groundwater quality. For each chemical, the lowest of these values was selected as the cleanup concentration. Cleanup concentrations for soil at the Property were approved by the staff of the Regional Water Quality Control Board - San Francisco Bay Region (RWQCB). The cleanup concentrations established for soil at the Property are: 760 milligrams per kilogram (mg/kg) for acetone; 0.7 mg/kg for benzene; 900 mg/kg for ethylbenzene; 7 mg/kg for methylene chloride; 120 mg/kg for 2-methylnaphthalene; 45 mg/kg for naphthalene; 1600 mg/kg for toluene; and 24 mg/kg for xylenes. For all other volatile organic compounds (VOCs), the cleanup concentration is 1 mg/kg total VOCs, as stated in RWQCB Order No. 90-63.
2.4.2 Soil Remediation Activities

A summary of soil remediation activities conducted by McLaren/Hart at the Property from 1983 through 1993 is presented in McLaren/Hart’s Phase I and II Soil Investigation Report (McLaren/Hart, 1996a). Approximately 10,000 cubic yards of soil were excavated from various areas of the site. Affected soil at the Property was either removed from the Property or remediated on site to concentrations below the cleanup concentrations (McLaren/Hart, 1996b).

2.5 SUMMARY OF GROUNDWATER INVESTIGATION AND REMEDIATION ACTIVITIES

Groundwater investigation and remediation activities were performed at the Property from 1982 to 1996 by various consultants and contractors on behalf of FMLDC. Based on the results of investigations performed by McLaren/Hart and others, the groundwater at the Property was impacted in two primary areas by petroleum hydrocarbons:

1. Former Gasoline Pump No. 1 Area: a former gasoline pump and associated 20,000-gallon gasoline underground storage tank (UST), located outside and adjacent to the assembly plant, that was used to fuel maintenance vehicles between 1954 to 1984. According to an engineering drawing, approximately 30 to 40 gallons per day or 1,000 gallons per month of gasoline were dispensed from this pump.

2. Former Executive Gasoline Tank Area: a former 2,000-gallon gasoline UST that supplied fuel to a pump outside the executive garage for fueling the executive automobiles. The UST was used from 1954 until the facility was closed in 1983. Approximately 7,500 gallons per month were dispensed from this pump.

These two areas have been the primary focus of groundwater investigations performed at the Property by FMLDC as required by the RWQCB. In addition, halogenated volatile organic compounds (HVOCs) in groundwater have migrated onto the Property from Jones Chemical, Inc. (Jones), a site regulated by the RWQCB, located east of the Property at 985 Montague Expressway. Investigative and remedial activities undertaken for groundwater at the Property are summarized below.
2.5.1 Groundwater Investigation

Groundwater quality data were collected at the Property from 1982 to 1996. The cumulative results of groundwater investigations and monitoring at the Property indicate that petroleum hydrocarbons, primarily gasoline, have been released to shallow groundwater beneath the Property. The primary on-site source areas of petroleum hydrocarbons to groundwater have been the Former Gasoline Pump No. 1 and the Former Executive Gasoline Tank Area. The maximum lateral and vertical extents of the groundwater affected by petroleum hydrocarbons in both areas were defined and were monitored by numerous perimeter wells for several years. Data indicated that the extent of the dissolved petroleum hydrocarbon plumes were stable and that petroleum hydrocarbon concentrations within the affected areas were stable or decreasing. A detailed description of groundwater investigation and remediation activities performed at the Property is presented in the Groundwater Quality Investigation Report (Geomatrix 1996a).

The groundwater investigations and monitoring performed by Jones also have shown that HVOC releases upgradient of the Property have migrated in groundwater to beneath the eastern, upgradient edge of the Property. Groundwater migrating onto the Property from the east includes the following HVOCs: PCE; TCE; 1,1-dichloroethene (1,1-DCE); 1,2-dichloroethene (1,2-DCE); 1,1,1-trichloroethane (1,1,1-TCA); 1,1-dichloroethane (1,1-DCA); and 1,2-dichloroethane (1,2-DCA) and vinyl chloride. Recent monitoring well data obtained from Jones (October 1996) indicate that total concentrations of HVOCs remaining in groundwater beneath the Property are generally less than 100 micrograms per liter (μg/l) and consist of TCE, PCE, 1,1,1-TCA, 1,1-DCE, and 1,2-DCA.

2.5.2 Groundwater Remediation

This section presents a brief description of the groundwater remediation activities undertaken at the Property.
2.5.2.1 Groundwater Extraction Trench System and Treatment Plant - 1989 to 1994

In 1989, a groundwater extraction trench system and air stripping treatment plant were installed by McLaren/Hart to intercept petroleum hydrocarbon-affected groundwater emanating from the Former Gasoline Pump No. 1 Area and the Former Executive Gasoline Tank Area. The groundwater extraction trench system consisted of an approximately 2000-foot long extraction trench and groundwater cut-off slurry wall. The purpose of the slurry wall was to enhance the extraction system by further preventing flow of groundwater past the trench and to prevent the flow of downgradient groundwater into the extraction trench. Extraction of groundwater began on 31 October 1989 and continued until April 1994. Significant concentrations of petroleum hydrocarbon constituents were not detected in samples from the trench over the time-frame it operated, indicating that both groundwater plumes had stabilized prior to reaching the trench, most likely due to in-situ bioremediation. As approved by the RWQCB, the groundwater extraction and treatment system was deactivated upon the installation of an enhanced bioremediation system in 1994 (Section 2.5.2.2).

2.5.2.2 Enhanced In-Situ Bioremediation System - 1994 to 1996

An enhanced in-situ bioremediation system, approved by the RWQCB, was installed by Geraghty & Miller and operated at the Property from 1994 to 1996. The purpose of this system was to enhance the rate of biodegradation of petroleum hydrocarbons in groundwater in both the Former Gasoline Pump No. 1 Area and the Former Executive Gasoline Tank Area. The system consisted of an air sparging system in both areas and a vapor extraction system in the Former Gasoline Pump No. 1 Area (Geraghty & Miller, 1995). The system was deactivated in December 1996 following RWQCB approval as part of site closure (RWQCB, 1996).

Until 1995, the extracted vapors were passed through granular activated carbon for treatment and discharged to the atmosphere under permit from the Bay Area Air Quality Management District (BAAQMD). In 1995, the BAAQMD eliminated requirements for treatment due to the
low concentrations of benzene being discharged; benzene was not detected in any of the samples collected in the latest sampling event conducted in September 1996.

2.5.2.3 Jones Chemical Company Groundwater Extraction System - 1994 to Present

The RWQCB, in Order No. 90-072 Provisions 2.C. and 2.F., required Jones to prevent the continued migration of HVOCs and to implement plume containment. Jones designed and installed a groundwater extraction system that included five groundwater extraction wells on the eastern side of the Property to contain the downgradient portion of its plume. These wells (JE-19 through JE-23) were installed in September 1993 about 300 feet apart in the eastern portion of the Property (Figure 3). Jones began extraction from the wells on 2 February 1994 (Levine-Frickel, 1996). According to RWQCB Order No. 90-072, Jones is required to continue operating this HVOC groundwater extraction system.

2.6 CURRENT ENVIRONMENTAL CONDITIONS

Based on the results of the extensive investigative and remedial actions that were performed at the Property, the identified environmental conditions that need to be considered during ongoing operations and maintenance of the Property, the continuing development of the Property, or if the Property use changes, are: (1) the presence of residual concentrations of chemicals in shallow soil; (2) the presence of residual petroleum hydrocarbons in shallow groundwater in the Former Gasoline Pump No. 1 Area and the Former Executive Gasoline Tank Area; and, (3) the presence of HVOCs from an upgradient source in groundwater beneath the upgradient (eastern) edge of the Property;

3.0 HUMAN HEALTH AND ECOLOGICAL RISK EVALUATION

This section summarizes the results of human health and ecological risk evaluations performed for the Property.
3.1 HUMAN HEALTH RISK
Health risk evaluations were conducted to assess the potential risk to potential future residents and commercial workers at the Property in its current development. Health risks associated with residual chemicals in shallow soil were evaluated by McLaren/Hart (McLaren/Hart, 1991). Health risks associated with residual petroleum hydrocarbons in groundwater were evaluated by Geomatrix (Geomatrix, 1996b). These evaluations concluded that soil containing residual chemicals and groundwater containing residual petroleum hydrocarbons at the Property will pose no threat to the health of residents or workers who might come into contact with soil on the Property or potential vapors emanating from groundwater beneath the Property.

3.2 ECOLOGICAL RISK
The Property is currently occupied by a large indoor shopping mall, and is completely covered by the mall structure, concrete and asphalt paving, and limited landscaping. As a result, the Property provides no viable habitat to support an urban animal population. As discussed in the Site Closure Report (Geomatrix, 1996b), groundwater affected by petroleum hydrocarbons has not migrated beyond the Property's boundaries, the groundwater plumes are considered stable, and chemical concentrations in groundwater generally are decreasing. Therefore, the Property does not present unacceptable risk to biota in the environment.

4.0 CLOSURE OF SITE REMEDIATION SYSTEMS
This section describes the decommissioning activities necessary to complete closure of the remediation systems at the Property. It is estimated that these closure activities will be completed by August 1997.

4.1 EXTRACTION TRENCH SYSTEM
The groundwater extraction trench system installed by McLaren/Hart consists of a groundwater extraction trench, a groundwater cutoff slurry wall, water conveyance pipelines, and electrical conduits (Figure 3). In conformance with Santa Clara Valley Water District (SCVWD)
requirements, decommissioning activities for the extraction trench will include: injecting grout into the extraction wells, trench monitoring wells, and trench drain pipes located within the trench; removal and disposal of equipment associated with the extraction trench system; and installation of flow barriers at required intervals along the trench. Closure activities for the water conveyance pipeline and electrical conduits, as required by the City of Milpitas, will include: removal of pull boxes and electrical and instrumentation cables from conduits; capping of the conduits; and drainage of the groundwater conveyance pipeline. There are no closure requirements associated with the groundwater cutoff slurry wall. In addition, the SCVWD groundwater production permit that is associated with the groundwater extraction trench system will be closed.

4.2 TREATMENT SYSTEM
The groundwater treatment system, installed by McLaren/Hart, includes a granular activated carbon and air stripper unit (Figure 3). Decommissioning activities will include collecting a water sample from the water that has accumulated in the influent surge tank for analysis in accordance with City of Milpitas Fire Department and the National Pollutant Discharge Elimination System (NDDES) permit requirements. If analytical results indicate that organic compounds are present in the water at concentrations exceeding NPDES effluent limits, the water will be treated by the air stripper prior to discharge through the effluent outfall under the existing NPDES permit. In conformance with the City of Milpitas Building Department, decommissioning activities will also include dismantling and removal/disposal of treatment system components, including structural concrete within the treatment system compound and the compound security fence. The NPDES permit and the BAAQMD operating permit associated with the groundwater treatment system will be closed.

4.3 AIR SPARGING SYSTEM
The air sparging system installed by Geraghty & Miller consists of an air sparging system and vapor extraction system located inside the Great Mall and an air sparging system located outside the Great Mall (Figure 4). Decommissioning activities for the air sparging systems will
include destruction of the wells associated with the systems in conformance to the requirements of the SCVWD. The vapor extraction system will be converted to a passive venting system by connecting the piping directly to the roof vent. Equipment and piping associated with the vapor extraction system and not necessary for passive venting will be removed. The BAAQMD permit associated with the air sparging systems will be revised to reflect the change to a passive venting system.

4.4 MONITORING WELLS
All remaining monitoring wells at the Property not associated with Jones (i.e., extraction wells JE-19 through -23 and monitoring wells JB-83, JB-84, and JB-91) will be destroyed in accordance with the SCVWD requirements (Figure 5). The SCVWD permits associated with the monitoring wells will be closed upon well destruction.

5.0 PROPERTY MANAGEMENT MEASURES DURING ONGOING SITE OPERATIONS, MAINTENANCE, AND REDEVELOPMENT

Property management measures to be taken during ongoing operations, maintenance, and redevelopment include the following: notification and disclosure requirements, construction safety measures, soil management, and use of groundwater on the Property. These measures are discussed below.

5.1 NOTIFICATION AND DISCLOSURE REQUIREMENTS
The environmental conditions at the Property are summarized in McLaren/Hart's Phase I and II Soil Investigation Report (McLaren/Hart, 1996a) and Soil Remediation Summary Report (McLaren/Hart, 1996b), and Geomatrix's Groundwater Quality Investigation Report (Geomatrix, 1996a) and Site Closure Report (Geomatrix, 1996b), and should be disclosed to all potential buyers, contractors, and interested parties to the extent required by law. The disclosure should include information contained in these reports regarding the nature and extent of chemicals in the soil and groundwater and potential human health risks. This SMP should be
included as part of the disclosure. In addition, tenants at the Property are notified of environmental conditions at the Property as part of the lease agreement with Great Mall Management.

5.2 CONSTRUCTION SAFETY MEASURES
Great Mall Management lease provisions currently require that no construction activities can occur without notification to and authorization by Great Mall Management. Prior to any significant construction activities at the Property, the contractor should prepare a site-specific health and safety plan (HSP). The HSP should describe the construction activities and address standard safety precautions such as protective measures for workers and soil handling issues, as appropriate. In the event that activities performed at the Property will disturb the subsurface in areas where chemicals are known to be present, resulting in additional exposure pathways (such as for maintenance or construction workers), the potential health risks associated with exposure to those residual chemicals in soil and groundwater should be evaluated, and appropriate precautions included in the HSP. All applicable state and federal regulations should be adhered to.

5.3 SOIL MANAGEMENT
Since some soil at the Property may contain chemical concentrations (below the established site cleanup concentrations), soil excavated during construction activities should be evaluated and/or analyzed for the appropriate chemicals based on the use history of the Property and/or the previous soil investigations performed at the Property (McLaren/Hart, 1996a and 1996b). If soil requires off-site disposal, additional waste characterization may be required by the disposal facility under consideration.

5.4 USE OF SHALLOW SITE GROUNDWATER
HVOCs and certain petroleum hydrocarbon constituents are known to be present in shallow groundwater at concentrations that currently exceed objectives for drinking water. However, shallow groundwater is not anticipated to be used as a source of drinking water. Therefore, it is
anticipated that groundwater will not be used for drinking water or other purposes until such
time as the RWQCB and applicable regulatory agencies approve use of groundwater at the Property.
6.0 REFERENCES

Geomatrix Consultants, Inc., 1996a, Groundwater Quality Investigation Report, Former Ford Automobile Assembly Plant, 1100 South Main Street, Milpitas, California, August.

Geomatrix Consultants, Inc., 1996b, Site Closure Report, Former Ford Automobile Assembly Plant, 1100 South Main Street, Milpitas, California, November.

McLaren/Hart Environmental Engineering, 1991, Soil Health-Based Cleanup Levels for Ford Motor Company Automobile Assembly Facility in Milpitas, California, 16 December.

McLaren/Hart Environmental Engineering, 1992, Site Use History, Former Ford Automobile Assembly Plant, Milpitas, California, 18 December.
